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SUMMARY

Because metabolites are hypothesized to play key
roles as markers and effectors of cardiometabolic
diseases, recent studies have sought to annotate
the genetic determinants of circulating metabolite
levels. We report a genome-wide association study
(GWAS) of 217 plasma metabolites, including >100
not measured in prior GWAS, in 2076 participants of
the Framingham Heart Study (FHS). For the majority
of analytes, we find that estimated heritability
explains >20% of interindividual variation, and that
variation attributable to heritable factors is greater
than that attributable to clinical factors. Further, we
identify 31 genetic loci associated with plasma me-
tabolites, including 23 that have not previously been
reported. Importantly, we include GWAS results for
all surveyed metabolites and demonstrate how this
information highlights a role for AGXT2 in cholesterol
ester and triacylglycerol metabolism. Thus, our study
outlines the relative contributions of inherited and
clinical factors on the plasma metabolome and pro-
vides a resource for metabolism research.
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INTRODUCTION

Recent studies have begun to integrate genomic and metabolo-

mic data in human cohorts (Demirkan et al., 2012; Gieger et al.,

2008; Hicks et al., 2009; Illig et al., 2010; Kettunen et al., 2012;

Suhre et al., 2011a, 2011b; Tukiainen et al., 2012). Because

metabolites are hypothesized to play key roles as markers and

effectors of cardiometabolic diseases, these efforts seek to

both refine and expand our understanding of the causal determi-

nants of circulating metabolite levels. Studies to date have been

notable for the identification of loci at enzymes or transport pro-

teins directly involved with a given metabolite’s disposition

(Suhre and Gieger, 2012). In turn, many of these loci have shown

relatively large effect sizes on metabolite levels, as compared to

findings in genome wide association studies (GWAS) for com-

mon diseases.

Whereas genetically informative deoxyribonucleic acid se-

quence is limited to four distinct chemical motifs, endogenous

metabolites span a variety of compound classes with significant

differences in size and polarity, across a wide range of concen-

trations. As a consequence, no single analytical method is

able to accommodate the chemical diversity of the entire

metabolome. Thus, GWAS of metabolite traits to date have

employed various methodologies including nuclear magnetic

resonance spectroscopy and mass spectrometry (MS), with
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Table 1. Sample Clinical Characteristics

Characteristic N = 2076

Age, years 55 (10)

Women, n (%) 1062 (51)

Systolic blood pressure, mmHg 127 (19)

Diastolic blood pressure, mmHg 75 (10)

Body-mass index, kg/m2 27.6 (5.0)

Antihypertensive treatment, n (%) 424 (20)

Diabetes mellitus, n (%) 137 (7)

Current smoker, n (%) 396 (19)

Prevalent cardiovascular disease, n (%) 49 (2)

Total cholesterol, mg/dl 207 (37)

HDL cholesterol, mg/dl 49 (15)

Characteristics of the 2076 individuals in the Framingham Offspring

Cohort who underwent metabolite profiling and GWAS are shown. Data

represent means (standard deviation) unless otherwise noted.

Cell Metabolism

Metabolomics GWAS in the FHS
the latter coupled to both gas and liquid chromatography (LC)

(Rhee and Gerszten, 2012). Even with a given analytical tool,

distinct methods have been required to survey polar versus

lipid analytes. We have developed a LC-MS based metabolo-

mics platform that measures a total of 217 analytes (113 polar

analytes and 104 lipid analytes), including >100 not measured

in prior GWAS.

In the current study, we performed metabolite profiling on

plasma obtained from 2076 individuals in the Framingham Heart

Study (FHS). The family-based structure of this cohort, as well

as its rich cardiometabolic phenotyping, presents a unique

opportunity to study the relative contributions of heritable,

environmental, and clinical factors influencing the plasma

metabolome. For many metabolites, we confirm that a substan-

tial fraction of metabolite variability is heritable (Shah et al., 2009;

Kettunen et al., 2012), often exceeding the influence ofmeasured

clinical factors. Using GWAS, we also identify numerous locus-

metabolite associations and demonstrate how these findings

complement and extend prior association studies of complex

human traits. Finally, we include a proof-of-principle demonstra-

tion of how the breadth of metabolite, genotype, and phenotype

data we present in FHS can motivate functional studies to pro-

vide biological insight.

RESULTS

A total of 2076 participants of the FHS Offspring Cohort,

including 873 sibships, underwent metabolic profiling and

genome-wide genotyping. The mean age was 55 years and

51% of participants were women (Table 1).

Relative Contributions of Heritable and Clinical Factors
to Metabolite Levels
The estimated proportion of interindividual metabolite variation

attributable to heritable factors (including genome-wide signifi-

cant loci) compared with clinical factors (age, sex, systolic blood

pressure, antihypertensive medication use, body-mass index,

diabetes, smoking status, and prevalent cardiovascular disease)

is displayed in Figure 1A and Figure S1. Metabolites most influ-
enced by clinical variables include the nicotine metabolite cotin-

ine (70% of variation explained by clinical factors, 66% by

smoking alone), and fructose/glucose/galactose (45%). Adjust-

ment for renal function in secondary analyses did not appre-

ciably change results (Table S1).

For the majority of metabolites, the proportion of variation

attributable to heritable factors was greater than that of clinical

factors: for 93% of metabolites assayed, measured clinical fac-

tors accounted for 20% or less of interindividual variation. By

contrast, estimated heritability explained greater than 20% of

the interindividual variation for 66% of metabolites. Amino acids

and other polar analytes had the highest heritability estimates,

including carnosine (h2 = 0.86, p = 6.8 3 10�4), anthranilic acid

(h2 = 0.84, p = 3.2 3 10�14), and glutamate (h2 = 0.82, p =

9.1 3 10�13), whereas heritability estimates for lipid analytes

were lower, with the highest estimate for lysophosphatidylcho-

line (LPC) 22:6 (h2 = 0.46, p = 2.0 3 10�7).

Heritability estimates for essential amino acids were lower

than for nonessential amino acids: mean h2 = 0.29, range

0.14–0.43, versusmean h2 = 0.53, range 0.15–0.82, respectively;

p = 0.01 (Figure 1B). Similarly, none of the essential amino acids

were associated with genetic loci at a genome-wide significant

level, whereas five of the ten nonessential amino acidsmonitored

by our platform had genome-wide significant findings in our

study. Conversely, clinical factors explained a greater proportion

of variation for essential versus nonessential amino acids (mean

R2 for clinical model = 0.17, range 0.04–0.34, versus mean R2 =

0.09, range 0.03–0.16, respectively). These findings align with

the relative contributions of endogenous (inherited) versus die-

tary (environmental) factors for these small molecules and pro-

vide internal validation for the observed distribution ofmetabolite

heritability.

GWAS Identifies 31 Genetic Loci Associated with
Plasma Metabolite Levels
Genome-wide associations are displayed in Table 2, and quan-

tile-quantile and linkage disequilibrium-plots for these associa-

tions are displayed in Figures S2 and S3. Of 217 metabolites

analyzed, 64 had at least one genome-wide significant locus.

Conversely, 31 discrete loci were associated with at least one

metabolite trait and a number of loci were associated with mul-

tiple metabolites (Table 2). Our data both replicate previously

identified associations as well as identify numerous novel

locus-metabolite associations (Figure 2). These novel findings

include loci that span genes encoding proteins with a direct

biochemical relationship with a given metabolite, loci previously

associated with complex human disease traits, and loci with no

prior significant associations in GWAS.

Confirmation of Previously Established Locus-
Metabolite Associations
Eight of the locus-metabolite associations identified in our

study have been previously reported, and seven of these eight

associations involve genes directly related to the transport or

synthesis of a given metabolite (Figure 2). For example, we

replicate prior associations between loci at SLC16A9, which en-

codes a carnitine efflux transporter, and carnitine; PRODH (pro-

line dehydrogenase), which encodes the enzyme that catalyzes

the first step of proline catabolism, and proline; and PHGDH
Cell Metabolism 18, 130–143, July 2, 2013 ª2013 Elsevier Inc. 131
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Figure 1. Genetic Architecture of the Human Plasma Metabolome

(A) The percent interindividual variation for positively charged, polar metabolites explained by clinical (black) and genetic factors: top SNP (green), second top

SNP (red), other genetic factors (gray). Clinical factors include age, sex, systolic blood pressure, antihypertensive medication use, diabetes mellitus, smoking

status, body-mass index, and prevalent cardiovascular disease.

(B) Data summarized for nonessential and essential amino acids. See also Figure S1 and Table S1.
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(phosphoglycerate dehydrogenase), which encodes the enzyme

that catalyzes the first and rate-limiting step of serine biosyn-

thesis, and serine (Suhre et al., 2011a). A locus at SLC16A10,

which encodes a tyrosine and phenylalanine transporter, has

previously been associated with the ratio of isoleucine/tyrosine

(Suhre et al., 2011a) and the ratio of alanine/tyrosine (Kettunen

et al., 2012); we show that this association holds true for tyrosine
132 Cell Metabolism 18, 130–143, July 2, 2013 ª2013 Elsevier Inc.
alone. We also identify an association between a locus at AGXT2

(alanine-glyoxylate aminotransferase-2) and its enzyme sub-

strate b-aminoisobutyric acid. Prior work has shown an associa-

tion between this locus and urinary levels of b-aminoisobutyric

acid (Suhre et al., 2011b).

Further, we confirm the association between glycine and

a variant at CPS1 (carbamoyl phosphate synthase 1), which
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encodes the enzyme that catalyzes the first committed step

of the urea cycle. Although not a urea cycle intermediate,

glycine can react with arginine (a urea cycle intermediate) to

yield ornithine (a urea cycle intermediate) and guanidinoacetic

acid. Methylation of guanidinoacetic acid yields creatine, which

is ultimately metabolized to creatinine. Notably, we identify a

novel association between the CPS1 locus and creatine,

whereas others have identified an association between CPS1

common variants and creatinine (Köttgen et al., 2010). Thus,

complementary metabolomic data sets are able to extend

the network of locus-metabolite associations along defined

biochemical pathways.

Finally, we replicate the association between the FADS1-3

(fatty acid desaturase 1-3) locus and phosphatidylcholines

(PCs) 36:4 and 38:4 (Gieger et al., 2008), as well as between a

variant within GCKR (glucokinase regulator) and alanine (the

GCKR variant was previously associated with alanine/glutamine)

(Kettunen et al., 2012). Novel associations at these loci with tria-

cylglycerol (TAG) traits are discussed further below.

Novel Associations in Directly Related Biological
Pathways
Among the numerous novel findings in our study, we first

describe eight locus-metabolite associations with strong biolog-

ical plausibility. In each case, the locus of interest includes a gene

encoding a protein directly responsible for the metabolism or

transport of the given metabolite. For three of the loci, mutations

have been identified as the cause of human disease. For

example, we identify an association between a variant at

UMPS (uridine monophosphate synthase) and orotic acid.

UMPS encodes an enzyme that combines orotic acid and

ribose-5-phosphate to form uridine monophosphate, and muta-

tions in this gene have been identified as the cause of hereditary

orotic aciduria (OMIM: 258900). Similarly, we identify an associ-

ation between a common variant at AGA (aspartylglucosamini-

dase) and asparagine. AGA encodes an enzyme that cleaves

asparagine fromN-acetylglucosamines as a final step in the lyso-

somal breakdown of glycoproteins, and mutations in this gene

result in the lysosomal storage disease aspartylglycosaminuria

(OMIM: 613228). Finally, we find an association between the

SERPINA7 locus and thyroxine. SERPINA7 encodes thyroxine-

binding globulin, and mutations in this gene result in various de-

grees of thyroxine-binding globulin deficiency (OMIM: 314200).

In addition to these findings with established human disease

correlates, we identify five other locus-metabolite associations

with strong biochemical underpinnings. We find an association

between a variant at DMDGH (dimethylglycine dehydrogenase)

and its enzyme substrate dimethylglycine; at GMPR (guanosine

monophosphate reductase) and the purine nucleoside xantho-

sine; at SLC6A13, which encodes a transporter with known

specificity for g-aminoisobutyrate (GABA), and the GABA-

isomer b-aminoisobutyric acid; at APOA1/C3/A4/A5 (apolipo-

protein A1/C3/A4/A5) and various TAGs and diacylglycerols

(DAGs); and at DDAH1 (dimethylarginine dimethylaminohydro-

lase 1) and NG-monomethylarginine (NMMA). Prior studies

have shown that DDAH1 is responsible for the degradation of

the dimethylarginines NMMA and asymmetric dimethylarginine

(ADMA), but not symmetric dimethylarginine (SDMA) (Hu et al.,

2011), andDDAH1 polymorphisms have previously been associ-
ated with ADMA levels (Abhary et al., 2010). In our data, the top

SNP (rs18582) at DDAH1 had a modest association with ADMA

(p = 5.6 3 10�6), but no association with SDMA (p = 0.15).

Other Novel Locus-Metabolite Associations
Several of the novel locus-metabolite associations identified in

our study include loci without a clear biochemical relationship

with the given metabolite. In several cases, however, these loci

have been associated with human disease or complex disease

phenotypes. For example, mutations inSLC7A9 cause cystinuria

type B (OMIM: 220100) (Feliubadaló et al., 1999) and common

variants in SLC7A9 have been associated with chronic kidney

disease (CKD) (Köttgen et al., 2010). We report an association

between the SLC7A9 locus and NMMA, with the minor allele at

this locus associated with a lower risk of CKD and lower plasma

levels of NMMA, raising the question of whether NMMA is a

potential biomarker or effector of CKD progression. Among the

2076 individuals in the current study, 123 with normal kidney

function at the time of metabolite profiling developed new-onset

CKD in the subsequent 8 years—interestingly, higher plasma

levels of NMMA were significantly associated with the risk of

developing future CKD (OR per SD 1.32, p = 0.003) (Rhee

et al., 2013).

Further examples of locus-metabolite associations identified

in our study with potential links to human disease include an

association between the HPS1 locus (Hermansky-Pudlak syn-

drome 1, OMIM: 203300) and ADMA. Similarly, loci at SYNE2

(spectrin repeat containing, nuclear envelope 2), associated

with sphingomyelin (SM) 14:0 in our data, has been associated

with atrial fibrillation (Ellinor et al., 2012); at DGKB (diacylglycerol

kinase), associated with indole propionate, has been linked to

fasting glucose (Dupuis et al., 2010); at NTAN1 (N-terminal

asparagine amidase), associated with cholesterol ester (CE)

20:3, has been associated with bone mineral density (Estrada

et al., 2012); at LIPC, associated with lysophosphatidylethanol-

amine (LPE) 16:0, has been associated with macular degenera-

tion and themetabolic syndrome (Neale et al., 2010; Kristiansson

et al., 2012); at SLCO1B1 (solute carrier organic anion trans-

porter family member 1B1), associated with LPE 20:4, has

been associated with statin-induced myopathy (Link et al.,

2008); and at PDE4D (phosphodiesterase 4D), associated with

SM 24:1, has previously been linked to stroke (Song et al.,

2006b), although this association was not validated in a larger

study (Bellenguez et al., 2012).

Although we catalog each of the loci that have been associ-

ated with human disease and have at least one genome-wide

significant metabolite association in our study, metabolite

associations that do not reach this threshold may also provide

pathophysiologic insights. As an example, we examined

metabolite associations with variants spanning KCNQ1 (potas-

sium voltage-gated channel, KQT-like subfamily, member 1);

common variants in KCNQ1 have previously been associated

with type 2 diabetes, with the hypothesis that the encoded

channel may modulate pancreatic insulin secretion (Unoki

et al., 2008; Yasuda et al., 2008). In our study, we note an

association between rs384037 in KCNQ1 and triiodothyronine

levels (p = 5.3 3 10�5). Furthermore, across the 2076

individuals in the current study, triiodothyronine levels are

strongly associated with metabolic traits, including plasma
Cell Metabolism 18, 130–143, July 2, 2013 ª2013 Elsevier Inc. 133



Table 2. Genome-wide Significant Loci Associated with Metabolites

Locus Trait SNP ch

Major/

minor Allele MAF Beta s.e. P-value Previous genome-wide associations

AGXT2 b-aminoisobutyric

acid

rs37370 5 T/C 0.10 1.02 0.05 5.8E-83 b-aminoisobutyric acid (Suhre et al., 2011b)

FADS1-3 PC 38:4

PC 36:4

LPC 20:4

CE 20:4

PC 38:5

LPC 20:5

CE 20:5

TAG 58:10

LPE 18:2

TAG 58:11

LPE 20:4

LPC 22:6

PC 34:2

PC 40:6

PC 36:2

PC 34:3

CE 16:0

LPC 20:3

CE 18:3

TAG 54:4

rs174545

rs102275

rs174550

rs174547

rs174535

rs174548

rs174548

rs174548

rs4246215

rs174556

rs174548

rs174550

rs174574

rs174535

rs174541

rs174576

rs174548

rs968567

rs174535

rs174550

11 C/G

T/C

T/C

T/C

T/C

C/G

C/G

C/G

G/T

C/T

C/G

T/C

C/A

T/C

T/C

C/A

C/G

C/T

T/C

T/C

0.33

0.33

0.33

0.33

0.33

0.29

0.29

0.29

0.36

0.29

0.29

0.33

0.33

0.33

0.36

0.33

0.29

0.15

0.33

0.33

�0.54

�0.45

�0.45

�0.44

�0.41

�0.36

�0.34

�0.30

0.29

�0.30

�0.30

�0.26

0.26

�0.26

0.25

0.23

�0.23

0.31

�0.21

0.19

0.03

0.03

0.03

0.03

0.03

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.05

0.04

0.04

2.7E-61

1.9E-41

9.7E-41

4.7E-37

1.4E-32

1.6E-23

7.8E-21

8.1E-17

2.4E-16

2.5E-16

7.0E-16

1.3E-13

1.3E-13

3.5E-13

2.6E-12

1.7E-10

1.8E-10

4.4E-10

5.5E-09

4.8E-08

Phospholipids (Lemaitre et al., 2011)

Total, HDL, and LDL cholesterol

(Teslovich et al., 2010)

Triglycerides (Teslovich et al., 2010)

Lipid subspecies (Kettunen et al., 2012;

Suhre et al., 2011a)

Fasting glucose (Dupuis et al., 2010)

Crohn’s disease (Franke et al., 2010)

Resting heart rate (Eijgelsheim et al., 2010)

CPS1 Glycine

Creatine

rs7422339

rs7422339

2 C/A

C/A

0.31

0.31

0.53

0.24

0.03

0.04

2.4E-58

2.5E-11

Creatinine production (Köttgen et al., 2010)

Homocysteine (Lange et al., 2010)

Fibrinogen (Danik et al., 2009)

HPS1 Asymmetric

dimethylarginine

rs6584192 10 T/G 0.37 �0.41 0.03 3.5E-33

DMGDH Dimethlyglycine rs248386 5 C/A 0.19 0.50 0.04 6.6E-33

SLC16A9 Carnitine rs1171617 10 T/G 0.23 �0.42 0.04 5.9E-26 Carnitine (Suhre et al., 2011a)

Uric acid (Kolz et al., 2009)

SERPINA7 Thyroxine rs7883218 X A/G 0.12 �0.39 0.04 1.3E-20

PRODH Proline rs2078743 22 G/A 0.09 0.49 0.06 2.2E-14 Proline (Kettunen et al., 2012)

GMPR Xanthosine rs9477074 6 T/C 0.37 0.25 0.03 3.0E-14 LDL cholesterol (Waterworth et al., 2010)

SLC6A13 b-aminoisobutyric

acid

rs11613331 12 A/G 0.49 �0.23 0.03 2.0E-12 Creatinine production (Köttgen et al., 2010)

LIPC LPE 16:0 rs1532085 15 G/A 0.38 0.24 0.03 3.7E-12 Total and HDL cholesterol (Teslovich et al., 2010)

Triglycerides (Teslovich et al., 2010)

Lipid subspecies (Demirkan et al., 2012;

Gieger et al., 2008; Kettunen et al., 2012)

Metabolic syndrome (Kristiansson et al., 2012)

Macular degeneration (Neale et al., 2010)

GCKR Alanine

Lactate

a-hydroxybutyrate

TAG 50:4

TAG 48:2

TAG 50:3

PC 34:3

PC 32:2

TAG 48:3

rs1260326

rs1260326

rs1260326

rs1260326

rs1260326

rs1260326

rs1260326

rs1260326

rs1260326

2 C/T

C/T

C/T

C/T

C/T

C/T

C/T

C/T

C/T

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.45

0.23

0.24

0.22

0.20

0.19

0.19

0.18

0.19

0.18

0.03

0.04

0.04

0.03

0.03

0.03

0.03

0.03

0.03

7.6E-12

3.3E-11

1.3E-09

3.4E-09

2.5E-08

2.6E-08

2.9E-08

3.9E-08

4.9E-08

Triglycerides (Teslovich et al., 2010)

Total cholesterol (Teslovich et al., 2010)

Phospholipids (Demirkan et al., 2012;

Lemaitre et al., 2011)

CRP (Dehghan et al., 2011; Ridker et al., 2008)

Chronic kidney disease (Köttgen et al., 2010)

Glycemic traits (Dupuis et al., 2010;

Saxena et al., 2010)

Uric acid (Kolz et al., 2009; Yang et al., 2010)

Alanine/glycine (Kettunen et al., 2012)

Platelet count (Gieger et al., 2011)

Albumin (Kamatani et al., 2010; Kim et al., 2011)

Glucose/mannose (Suhre et al., 2011a)

Crohn’s disease (Franke et al., 2010)

(Continued on next page)
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Table 2. Continued

Locus Trait SNP ch

Major/

minor Allele MAF Beta s.e. P-value Previous genome-wide associations

APOA1/

C3/A4/A5

DAG 36:2

TAG 56:3

TAG 56:10

TAG 54:2

TAG 52:4

TAG 54:3

DAG 34:2

TAG 52:5

DAG 36:1

TAG 52:3

TAG 54:5

rs964184

rs964184

rs964184

rs964184

rs964184

rs964184

rs964184

rs964184

rs964184

rs12294259

rs964184

11 C/G

C/G

C/G

C/G

C/G

C/G

C/G

C/G

C/G

C/T

C/G

0.14

0.14

0.14

0.14

0.14

0.14

0.14

0.14

0.14

0.06

0.14

0.33

0.32

0.31

0.31

0.30

0.29

0.28

0.28

0.28

0.39

0.26

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.07

0.05

1.3E-11

2.8E-11

1.5E-10

1.9E-10

2.4E-10

3.2E-09

6.0E-09

7.4E-09

8.2E-09

1.7E-08

4.8E-08

Triglycerides (Teslovich et al., 2010)

HDL cholesterol (Teslovich et al., 2010)

Coronary artery disease (Schunkert et al., 2011)

DDAH1 NG-monomethyl-

arginine

rs18582 1 A/G 0.35 0.24 0.04 2.2E-11

SLCO1B1 LPE 20:4 rs4149056 12 T/C 0.15 0.30 0.05 1.1E-10 Bilirubin (Johnson et al., 2009)

Statin-induced myopathy (Link et al., 2008)

Lipid subspecies (Suhre et al., 2011a)

AGA Asparagine rs4690522 4 C/A 0.32 0.25 0.04 1.4E-10

SYNE2 SM 14:0 rs11158519 14 G/A 0.14 0.31 0.05 3.2E-10 Lipid subspecies (Illig et al., 2010)

Atrial fibrillation (Ellinor et al., 2012)

Pulmonary function decline (Imboden et al., 2012)

UMPS Orotic acid rs9844948 3 C/A 0.16 �0.32 0.05 7.6E-10

PDE4D SM 24:1 rs4700347 5 A/G 0.16 0.28 0.05 3.4E-09 Stroke (Song et al., 2006b)

Esophageal cancer (Wu et al., 2011)

Asthma (Himes et al., 2009)

Sleepiness (Gottlieb et al., 2007)

SEC61G CE 20:4 rs11981543 7 C/A 0.11 0.32 0.05 4.2E-09

rs6593086 TAG 58:9

TAG 56:7

TAG 58:8

rs6593086

rs6593086

rs6593086

7 C/G

C/G

C/G

0.34

0.34

0.34

�0.20

�0.20

�0.20

0.03

0.03

0.03

4.4E-09

6.1E-09

2.0E-08

UGT1A5 Xanthurenate rs4148325 2 C/T 0.31 0.23 0.04 4.9E-09 Bilirubin (Johnson et al., 2009; Sanna et al., 2009)

SLC7A9 NG-monomethyl-

arginine

rs8101881 19 T/C 0.44 �0.20 0.03 5.0E-09 Chronic kidney disease (Köttgen et al., 2010)

Creatinine level (Chambers et al., 2010)

Urine lysine/valine (Suhre et al., 2011b)

ABP1 g-aminoisobutyric

acid

rs6977081 7 G/T 0.34 0.23 0.04 5.4E-09

PHGDH Serine rs477992 1 G/A 0.32 �0.21 0.04 6.5E-09 Serine (Suhre et al., 2011a)

SLC16A10 Tyrosine rs411604 6 G/A 0.36 0.20 0.04 1.0E-08 Isoleucine/Tyrosine (Suhre et al., 2011a)

Alanine/Tyrosine (Kettunen et al., 2012)

CSNK1G3 Indoxyl sulfate rs875480 5 A/G 0.24 0.25 0.04 1.4E-08

GNAL CE16:0 rs1786573 18 T/C 0.27 0.21 0.04 2.8E-08

DGKB Indole propionate rs12699655 7 T/G 0.45 �0.21 0.04 3.1E-08 Glycemic traits (Dupuis et al., 2010)

TBX18 DAG 36:1 rs4510639 6 C/T 0.25 0.21 0.04 3.5E-08

NTAN1 CE 20:3 rs3803573 16 C/T 0.28 �0.21 0.04 4.7E-08 Bone mineral density (Estrada et al., 2012)

Thirty-one genetic loci with at least one genome-wide significant metabolite association are shown. Citations are provided for previously established

associations between these loci and other traits. SNP, single nucleotide polymorphism; MAF, minor allele frequency; ch, chromosome; s.e., standard

error; PC, phosphatidylcholine; LPC, lysophosphatidylcholine; CE, cholesterol ester; TAG, triacylglycerol; LPE, lysophosphatidylethanolamine; DAG,

diacylglycerol; SM, sphingomyelin. See also Figures S2 and S3 and Tables S2 and S3.
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insulin levels (p = 1.5 3 10�20), plasma triglyceride levels (p =

5.3 3 10�12), and body-mass index (p = 4.9 3 10�8). Thus,

our data in FHS raise the possibility that the association

between common variants in KCNQ1 and type 2 diabetes

may also be mediated by the gene’s role in modulating plasma

triiodothyronine levels.
Lipid Profiling Demonstrates Heterogeneous Effects of
Loci Associated with Total Triglycerides
Although prior GWAS have identified numerous loci associated

with total triglyceride levels, our study is the first to incorporate

comprehensive TAG profiling. As various combinations of

acyl chains may be esterified to a glycerol backbone, bulk
Cell Metabolism 18, 130–143, July 2, 2013 ª2013 Elsevier Inc. 135
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related biological pathway
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Kettunen et al., 2012
Tukiainen et al., 2012
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GMPR (xanthosine)
SLC6A13 (β-aminoisobutyric acid)
DDAH1 (NG-monomethyl-arginine)
APOA1/C3/A4/A5 (8 TAGs, 3 DAGs)
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TBX18 (DAG 36:1)

Demirkan et al., 2012
Framingham Heart Study Hicks et al., 2009

Figure 2. Thirty-One Genome-wide Significant Loci Associated with Metabolites in FHS

Loci with significant metabolite associations in FHS are depicted within the black circle. Overlap with prior studies (dotted circles) is indicated for eight loci. Prior

studies found an association between common variants at *AGXT2 and urinary levels of b-aminoisobutyric acid, yGCKR and the alanine/glutamine ratio,

and zSLC16A10 and the tyrosine/isoleucine and alanine/tyrosine ratios. See also Figures S2 and S3.
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triglycerides are actually composed of dozens of distinct TAG

molecules. In the current study, we identify significant TAG asso-

ciations for three loci previously associated with total triglycer-

ides: GCKR, and the FADS1-3 and APOA1/C3/A4/A5 gene

clusters. A fourth region at chromosome 7p12.1 (rs6593086)

found to be associated with TAG traits has not been previously

associated with total triglyceride levels. To test the hypothesis

that the higher-resolution phenotyping enabled by our platform

sheds insight on these associations, we examined each locus’s

association with all of the TAGs monitored by our platform.

For leading SNPs at GCKR, FADS1-3, APOA1/C3/A4/A5, and

rs6593086, Figure 3 depicts the beta coefficient and P value for

association across the 46 TAGsmeasured in FHS. As suggested

by the four significant findings (TAGs 48:2, 48:3, 50:3, 50:4), the

GCKR locus demonstrated a stronger association with TAGs of

relatively lower carbon content (Figure 3A). A comprehensive

view of PCs shows a similar pattern of association (including sig-

nificant associations with PC 32:2 and PC34:3) (Figure 4A).

Notably, the top SNP associated with these metabolic traits

was rs1260326, a missense variant (L446P) that in functional

studies has been established as the likely causal variant explain-

ing the association with fasting bulk triglyceride and glucose

levels (Beer et al., 2009; Orho-Melander et al., 2008).

In contrast to the GCKR locus, the FADS1-3 locus had stron-

ger associations with TAGs of relatively higher carbon and dou-
136 Cell Metabolism 18, 130–143, July 2, 2013 ª2013 Elsevier Inc.
ble bond content (Figure 3B), including significant associations

with TAGs 54:4, 58:10, and 58:11. These data extend prior

work that has demonstrated a similar pattern of association

between this locus and plasma phospholipid carbon and double

bond content (Gieger et al., 2008), and is corroborated by our

own PC data (Figure 4B). The leading SNP in the APOA1/C3/

A4/A5 gene cluster was associated with an intermediate TAG

phenotype relative toGCKR and FADS1-3, demonstrating stron-

ger associations for TAGs with intermediate carbon content

(Figure 3C; i.e., TAGs with 50 to 56 carbons). Figure 3D demon-

strates a striking pattern of TAG associations for rs6593086, a

SNP that is located >50 kb from the closest coding gene

(POM121L12). As with the FADS1-3 locus, this SNP had stronger

associations with TAGs of relatively greater carbon and double

bond content, although the significant associations were

nonoverlapping. Further, rs6593086 had a consistent direction

of association across themajority of TAGs, whereas the direction

of effect for the FADS1-3 locus differed at the extremes of TAG

carbon content.

Genome-wide Association Data across All Surveyed
Metabolites as a Resource for Metabolism Research
Although the novelty of our TAG data set motivates interest in

select TAG association patterns, further interrogation of the

breadth of our data will provide other insights as well. To that
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Figure 3. Metabolite Profiling Demonstrates

Distinct Patterns of TAG Associations for

Select Loci

(A–D) For the 46 triacylglycerols (TAGs) monitored

by our platform, the beta coefficient (left y axis) and

P value (right y axis) of association are shown for the

top variant at (A)GCKR, (B) FADS1-3, (C) APOA1/C3/

A4/A5, and (D) rs6593086.
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end, we include GWAS data for each of the 217 metabolites

surveyed by our platform, including all loci with p < 1.0 3 10�3

(Table S2), as well as comprehensive metabolite data for each

locus with at least one genome-wide significant association

(Table S3). With these resources, we believe that independent

investigators will be able to rapidly interrogate the genetic

underpinnings of metabolites of interest, including biologically

meaningful associations that do not meet the genome-wide sig-

nificance threshold (but potentially of high statistical significance

in a focused interrogation). Conversely, investigators focused on

a particular gene highlighted by our study will be able to query

which metabolites are downstream of common genetic variation
Cell Metabolism 18, 1
in that gene. Finally, access to the breadth

of our metabolite GWAS data will com-

plement the publicly available metabolite

data that we have already uploaded on the

database of Genotypes and Phenotypes

(http://www.ncbi.nlm.nih.gov/gap) for all

2076 individuals in FHS profiled in the

current study.

To provide proof of principle of this

approach, we examined our data in the

FHS on b-aminoisobutyric acid. In cross-

sectional analyses, plasma b-aminoisobuty-

ric acid levels have a negative correlation

with serum triglyceride levels in the FHS

(a 1-SD decrement in log b-aminoisobutyric

acid is associated with a 1.07 mg/dL in-

crease in serum triglyercides, p = 2.3 3

10�21). In the current study, we identify a

striking association between the AGXT2

locus and plasma b-aminoisobutyric acid

levels (p = 5.8 3 10�83), with the top

SNP (rs37370) in AGXT2 accounting for

36% of its estimated heritability. In light of

the cross-sectional association between

b-aminoisobutyric acid levels and total

triglycerides, we were interested to note

that rs37370 also had many nominal associ-

ations with plasma TAGs and CEs (Table

S4), with the direction of association oppo-

site for TAGs versus CEs, suggesting that

genes responsible for b-aminoisobutyric

acid metabolism may have a causal and

opposing impact on plasma TAG and CE

levels.

In order to test this potential link between

b-aminoisobutyric acid and lipid homeosta-

sis, we knocked down agxt2 in zebrafish
using morpholino antisense oligonucleotides (Figures S4A and

S4B). In some fish, this knockdown resulted in no overt pheno-

type, whereas in others it resulted in a prominent defect in yolk

sack extension and mild pericardial edema (Figure 5A). When

compared to control fish, agxt2 knockdown fish with normal

phenotype (AGXT2 I) and abnormal phenotype (AGXT2 II) had

lower agxt2mRNA (Figure 5B) and b-aminoisobutyric acid levels

(Figure 5C); further, AGXT2 II fish had a trend for lower agxt2

mRNA and b-aminoisobutyric acid levels compared to AGXT2 I

fish. Lipid profiling demonstrated a broad, opposing, and

dose-dependent impact of agxt2 knockdown on fish CE and

TAG levels (Figures 5D and 5E) that aligns with the opposing
30–143, July 2, 2013 ª2013 Elsevier Inc. 137
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Figure 4. Phosphatidylcholine associations for the GCKR and

FADS1-3 loci

(A and B) For the 18 phosphatidylcholines (PCs) monitored by our platform, the

beta coefficient (left y axis) and P value (right y axis) of association are shown

for the top variant at (A) GCKR and (B) FADS1-3.
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directionality of association between the AGXT2 locus and TAG

and CE levels in humans (Figure 5F).

To test whether the association between b-aminoisobutyric

acid and lipid metabolism is specific to agxt2, we used morpho-

lino antisense oligonucleotides to knock down abat (Figure S4C),

which encodes an enzyme that catalyzes an alternative pathway

for b-aminoisobutyric acid metabolism (Figure S4A). As with

agxt2 knockdown, abat knockdown resulted in an abnormal

phenotype notable for a defect in yolk sack extension and

pericardial edema (Figure S4D). Furthermore, abat knockdown

in fish resulted in decreased b-aminoisobutyric acid levels

compared to control fish (Figure S4E) and recapitulated the

decrease in CE levels and the increase in TAG levels seen in

agxt2 knockdown fish (Figures S4F and S4G).

Because cholesterol esterification is confined to a defined set

of enzymes, encoded by lcat, soat1, and soat2, we next as-

sessed the effect of agxt2 and abat knockdown in zebrafish on

the expression of these genes (Figure S5). We found that both

agxt2 and abat knockdown resulted in decreased expression

of lcat and soat2, consistent with the lower CE levels identified

by LC-MS. Notably, humans with inherited LCAT deficiency

develop both marked reductions in circulating CE levels as well

as hypertriglyceridemia (Frohlich et al., 1988). Lcat ablation in

mice similarly results in hypertriglyceridemia, whereas trans-

genic Lcat overexpression results in lower plasma triglyceride

levels (Ng et al., 1997; Francone et al., 1995). Although the exact

molecular pathways linking CE and TAG metabolism in these
138 Cell Metabolism 18, 130–143, July 2, 2013 ª2013 Elsevier Inc.
contexts have not been fully elucidated, Ng et al. have shown

that Lcat deficiency in mice results in (1) increased triglyceride

production, with increased expression of Srebp-1, Fas, and

Acc-1; (2.) decreased triglyceride catabolism, with impaired

lipase activity; and (3) increased expression of Hmgcr and

decreased expression of Soat2 (Ng et al., 2004; Song et al.,

2006a). In addition to lowering the expression of lcat and

soat2, we found that both agxt2 and abat knockdown in zebrafish

resulted in increased expression of srebp-1 and hmgcr, as well

as decreased expression of lipc (Figure S5). Taken together,

these data extend the results of gene-metabolite-phenotype

data in FHS and highlight a functional link between b-aminoiso-

butyric acid, CE, and TAG metabolism in zebrafish.

DISCUSSION

Our platform surveys >100 metabolites not screened in prior

GWAS, and extends recent efforts to annotate the common

genetic determinants of circulating metabolite levels. Previously

unmeasured metabolites include several distinct classes of

lipid analytes for which we report numerous locus-metabolite

associations, many in loci previously associated with human

disease. Furthermore, using the rigorous characterization of

clinical factors and family-based relationships of FHS partici-

pants, we delineate the relative contributions of inherited, envi-

ronmental, and clinical factors on the metabolome. For select

loci, we show that a broad view of metabolite associations pro-

vides insight on gene function, in some cases confirming known

biochemical functions of the gene product (e.g., FADS1-3) and in

others highlighting unanticipated metabolic roles (e.g., AGXT2).

For the majority of analytes, variation attributable to heritable

factors is greater than that attributable to clinical factors, with

the notable exception of the tobacco metabolite cotinine. In

fact, heritability estimates for manymetabolites are considerably

higher than for traditional biomarkers, such as B-type natriuretic

peptide (h2 = 0.35) (Wang et al., 2003) or C-reactive protein (h2 =

0.30) (Schnabel et al., 2009). In some cases, this highlights

metabolites that serve as proximal reporters of underlying

gene function. For example, the top SNP (rs37370) in AGXT2

accounts for approximately a third of the estimated heritability

for its enzyme substrate b-aminoisobutyric acid. The top

SNPs for glycine (rs7422339, CPS1) and PCs 36:4 and 38:4

(rs102275, FADS1-3) account for nearly all of their heritability

(Figure 1). For most metabolites, however, either no genome-

wide significant association was identified or the top genome-

wide significant SNP explained only a small fraction of overall

heritability. To what extent the unexplained heritability for

these metabolites is attributable to common polymorphisms

with subgenome wide associations, the effect of rare variants

or copy number variants not captured by SNPs in GWAS arrays,

or other factors (including shared environmental factors) remains

undetermined.

For select loci associated with human disease, e.g., UMTS

and hereditary orotic aciduria, the locus-metabolite association

identified in our study reflects the gene product’s enzymatic

function. By contrast, several loci with previously established

disease associations have no enzymatic or transport function

directly related to the associated metabolite. In these cases,

the locus-metabolite association identified in our study may
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Figure 5. AGXT2 Modulates Lipid Homeostasis in Zebrafish

(A) Zebrafish embryos were injected with 2 nL of a 400 mMsolution of a splice blocking agxt2morpholino oligonucleotide (MO) or control MO. At 48 hpf, agxt2MO

injection resulted in morphants with both normal phenotype (upper right panel, ‘‘AGXT2 I’’) and morphants with defective yolk sac extension and pericardial

edema (lower left panel, ‘‘AGXT2 II’’).

(B) RT-PCR of agxt2mRNA for control, AGXT2 I and AGXT2 II morphants at 48 hpf; the 300 nucleotide fragment is theWT agxt2 transcript and the 109 nucleotide

fragment is the knocked-down (KD) agxt2 transcript. The relative extent of WT agxt2 expression, normalized to rpl13-a, was estimated from band intensities; data

are presented as mean ± SD, *p < 0.05 for comparison to control.

(C) b-aminoisobutyric acid levels in control, AGXT2 I and AGXT2 II morphants at 48 hpf; data are presented as mean ± SD, *p < 0.05 for comparison to control.

(D and E) CE (D) and TAG (E) levels for control, AGXT2 I and AGXT II larvae at 5 dpf; data are presented asmean ± SD, *p < 0.05 for comparison to control, #p < 0.05

for comparison to AGXT2 I.

(F) For TAGs (solid circles) and CEs (hollow circles), plot of eachmetabolite’s association with rs37370 (AGXT2) in FHS on the x axis versus the percent difference

for each metabolite in AGXT I versus control zebrafish on the y axis. See also Figures S4 and S5 and Table S4.

Cell Metabolism

Metabolomics GWAS in the FHS
provide information on the pathophysiologic link between a

given locus and disease (Adamski, 2012; Suhre and Gieger,

2012). For example, the SLC7A9 locus, associated with NMMA

in our study, encodes an amino acid transporter in the kidney

with specificity for dibasic amino acids including cystine and

arginine (Mora et al., 1996). Common variants in SLC7A9 have

been associated with CKD (Köttgen et al., 2010). However,

CKD is not characterized by cystinuria or cystine stones, as

with the Mendelian disorder attributable to SLC7A9 mutations.

Our data highlight plasma NMMA, a methylarginine that inhibits

NO synthase (Vallance et al., 1992) as a potential intermediary

between common variation at this locus and renal disease.

Indeed, we find that elevated plasma levels of NMMA are asso-

ciated with an increased risk of future CKD among individuals

with normal kidney function at baseline. Thus, our data raise
the hypothesis that NMMA could be both a biomarker and

effector of CKD risk.

Because a narrow focus on only genome-wide significant

associations is likely to overlook biologically meaningful findings,

we also highlight a sub-genome-wide significant association

between KCNQ1, previously associated with type 2 diabetes,

and triiodothyronine levels. Notably, recent studies demonstrate

an essential role for the KCNQ1 channel in thyroid I� uptake

(Purtell et al., 2012). Further, Kcnq1 ablation in mice has been

shown to result in hypothyroidism (Fröhlich et al., 2011). In

cross-sectional analyses, we find that plasma triiodothyronine

levels are strongly correlated with metabolic parameters in

FHS, including plasma insulin, plasma triglycerides, and BMI.

Thus, in addition to raising an intriguing link between potassium

channel function in the thyroid and type 2 diabetes risk, these
Cell Metabolism 18, 130–143, July 2, 2013 ª2013 Elsevier Inc. 139
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findings reinforce the potential value of the full breadth and depth

of our data.

We also show that a more granular lipidomic analysis informs

findings from prior GWAS of bulk lipid measures. More specif-

ically, we examine the association across all TAGs for select

loci and identify distinct TAG signatures that highlight underlying

gene function. The FADS1-3 locus had a strong association with

TAGs of high double-bond content, as would be expected given

the critical role the fatty acid desaturases encoded at this locus

play in the synthesis of u-3 and u-6 polyunsaturated fatty acids.

By contrast, the GCKR locus had a stronger association for

TAGs of lower carbon and double-bond content. We and others

have previously shown that these TAGs are tightly correlated

with insulin resistance, whereas TAGs with relatively higher car-

bon (and double-bond) content are associated with increased

insulin sensitivity (Kotronen et al., 2009; Rhee et al., 2011). The

APOA1/C3/A4/A5 locus was associated with TAGs of intermedi-

ate carbon content. Unlike TAGs at the lower and higher ex-

tremes of carbon content, these TAGs are comprised primarily

of the abundant fatty acids palmitic acid, palmitoleic acid, stearic

acid, and oleic acid, and as a result make the largest quantitative

contribution to total plasma triglyceride levels (i.e., plasma

lipoprotein triglyceride content) (Rhee et al., 2011). Finally,

rs6593086 demonstrated a striking pattern of TAG associa-

tion—although no coding gene resides within 50 kb of this

SNP, our data predicts a role for this genomic region in the regu-

lation of fatty acid desaturation and/or elongation.

In order to further demonstrate how a metabolomic approach

is able to elucidate new biology, we tested the effects of agxt2

and abat knockdown in zebrafish. Because cross-sectional ana-

lyses highlighted a strong correlation between b-aminoisobuty-

ric acid levels and total triglycerides in the FHS, and because

the AGXT2 locus (a powerful determinant of b-aminoisobutyric

acid levels) also had nominal associations with plasma TAGs

and CEs, we hypothesized that modulating agxt2 would impact

b-aminoisobutyric acid levels and modulate lipid homeostasis

in fish. Indeed, we noted a dose-dependent increase in TAGs

and decrease in CEs following gene knockdown. Similar ex-

periments using abat knockdown resulted in a similar decre-

ment in b-aminoisobutyric acid levels and recapitulated the

increase in TAGs and decrease in CEs observed with agxt2

knockdown. Both agxt2 and abat knockdown resulted in

decreased lcat and soat2 expression, increased srebp-1 expres-

sion, and decreased lipc expression, all findings that would be

expected to result in the decreased CE and increased TAG levels

observed in these fish. Although further studies are needed to

understand howmodulating b-aminoisobutyric acid, a catabolite

of thymine and valine, impacts the expression of lcat, srebp-1,

and other fundamental effectors of lipid metabolism, our data

provide an example of how the breadth of gene, metabolite,

and phenotype data we present in the FHS can provide a spring-

board for research in metabolism.

Because our platform measures numerous metabolites not

surveyed in prior metabolomics GWAS, additional profiling in

other cohorts will be required to validate our findings. However,

we note that our study does recapitulate eight locus-metabolite

associations reported in prior metabolomics GWAS. Further,

eight of our novel findings highlight loci encoding enzymes

or transporters directly linked to the associated metabolite,
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providing internal validation by way of biological plausibility.

Nevertheless, future efforts will seek to provide external replica-

tion for several of the associations identified in this study. As the

FHS includes middle-aged-to-older individuals of predominantly

European ancestry, future studies should also include more

diverse populations in order to test the generalizability of our

findings.

In summary, we performed a metabolomics GWAS on plasma

obtained from 2076 individuals in a large, community-based

cohort. This study corroborates prior data demonstrating the

relatively high heritability estimates for circulating metabolites,

and it is the first to compare these measures against the

contribution of clinical covariates. Further, we report 31 loci

with significant metabolite associations and show how exam-

ining association patterns across the metabolome for select

loci may begin to provide insights in metabolism. Importantly,

we include GWAS data on all metabolites surveyed, as well as

full metabolite data for each locus with at least one significant

association, as a resource for the scientific community. We

anticipate that future efforts to understand and synthesize sub-

genome-wide significant findings and to understand patterns

of metabolite associations will further elucidate the genetic

determinants of the plasma metabolome and provide new in-

sights about gene function and disease pathogenesis in the

context of human metabolism.

EXPERIMENTAL PROCEDURES

Study Sample

The FHS Offspring cohort is a prospective, observational, community-based

cohort (Kannel et al., 1979). The children of FHS participants and their spouses

were recruited in 1971 and have been followed with serial examinations. A total

of 2076 participants of European descent who attended the fifth examination

(1991–1995) and underwent metabolic profiling and genome-wide genotyping

were included in this analysis. All participants provided informed consent and

the study protocol was approved by the Boston UniversityMedical Center IRB.

Clinical Assessment

Participants underwent a comprehensive medical history, physical examina-

tion, and anthropormetry at the fifth examination. Diabetes mellitus was

defined as a fasting glucose R126 mg/dL, nonfasting blood glucose

R200mg/dL, or the use of insulin or oral antidiabetic medications. Participants

who had smoked regularly during the prior year were considered current

smokers. Fasting total and high-density lipoprotein cholesterol levels were

obtained. Estimated glomerular filtration rate (eGFR) was calculated using

theModification of Diet in Renal Disease equation (Levey et al., 1999). Previous

cardiovascular events were adjudicated by a 3-physician panel after review of

medical records, and included a history of coronary heart disease, heart

failure, and stroke.

Genome-wide Genotyping and Imputation

Genotyping methods have previously been described (Wilk et al., 2009). In

brief, genome-wide genotyping was conducted using the Affymetrix 500K

mapping array and the Affymetrix 50K gene-focused MIP array. Genotypes

were called using Chiamo (http://www.stats.ox.ac.uk/�marchini/software/

gwas/chiamo.html). Imputation of 2.5 million SNPs was then performed

(HapMap CEU population, release 22, build 36; http://hapmap.org) using a

hidden Markov model that was implemented in MACH (version 1.0.15) (Li

et al., 2010).

Metabolite Profiling

Blood sampleswere collected after an overnight fast, immediately centrifuged,

and stored at �80�C until assayed. Amino acids, amino acid derivatives,

urea cycle intermediates, nucleotides, and other positively charged polar

http://www.stats.ox.ac.uk/%7Emarchini/software/gwas/chiamo.html
http://www.stats.ox.ac.uk/%7Emarchini/software/gwas/chiamo.html
http://www.stats.ox.ac.uk/%7Emarchini/software/gwas/chiamo.html
http://hapmap.org
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metabolites were profiled as previously described using 10 ml of plasma (Wang

et al., 2011). Lipids were profiled as previously described using 10 ml of plasma

(Rhee et al., 2011). For each lipid analyte, the first number denotes the total

number of carbons in the lipid acyl chain(s), and the second number (after

the colon) denotes the total number of double bonds in the lipid acyl chain(s).

For organic acids, sugars, bile acids, and other negatively charged polar

metabolites, 30 ml of plasma were used and MS data were acquired using

ESI and MRM in the negative ion mode (details provided in the Supplemental

Experimental Procedures). Table S5 lists the 217metabolites measured by our

platform and specifies overlap with prior metabolomics-GWAS.

Statistical Analysis

The percent interindividual variability in log-transformed metabolite concen-

trations accounted for by measured clinical factors (R2) was assessed using

multivariable linear regression models adjusted for age, sex, systolic blood

pressure, antihypertensive medication use, body-mass index, diabetes,

smoking status, and prevalent cardiovascular disease. In secondary analyses,

we further adjusted for eGFR. Analyses were performed using SAS, version

9.1.3 (SAS Institute, Cary, NC, USA).

Due to right-skewed distributions of metabolite levels and differences in

scaling, genetic analyses were conducted using normalized residuals of

metabolite levels, adjusted for age and sex. Heritability of each metabolite

was estimated using variance-component models and Sequential Oligogenic

Linkage Analysis Routines (SOLAR) (Almasy and Blangero, 1998). The associ-

ation of genetic variants andmetabolite concentrations was tested using linear

mixed effects models to accommodate pedigree data under an additive

genetic model. Genome-wide association analyses were performed using R

(Chen and Yang, 2010), and implemented using the lmekin function in the

kinship package (Therneau et al., 2003). Population stratification was

accounted for by adjusting for PC1 if p < 0.0001, and the final genomic control

parameter lambda was < 1.03 for all analyses. Results were filtered for minor

allele frequency > 5% and imputation ratio of >0.80. Results were considered

genome-wide significant at p < 5.0 3 10�8.

Zebrafish Studies

All zebrafish studies were approved by the MGH Subcommittee on Research

Animal Care. The splice blocking agxt2 and abat morpholino oligonucleotides

(MOs) were designed to target the intron1-exon2 junction and the intron4-

exon5 junction (Figure S4) in agxt2 and abat, respectively (Gene Tools, LLC),

and were injected into one- to two-cell stage zebrafish embryos using an

Eppendorf Femtojet microinjector. Forty-eight hours post fertilization, em-

bryos were utilized for b-aminoisobutyric acid measurement, and 5 days

post fertilization larvae were used for CE- and TAG-related gene expression

and lipid profiling. Metabolite and gene-expression data were compared

across groups using two-tailed t tests.
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The following accession numbers have been uploaded on the Genotypes and
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